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Consistent Community Identification in Complex Networks
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We have found that known community identification algorithms produce inconsistent communi-
ties when the node ordering changes at input. We use the pairwise membership probability and
consistency to quantify the level of consistency across multiple runs of an algorithm. Based on these
two metrics, we address the consistency problem without compromising the modularity. The key
insight of the algorithm is to use pairwise membership probabilities as link weights. It offers a new
tool in the study of community structures and their evolutions.
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I. INTRODUCTION

Understanding and identifying community structure in
a complex network have been major research topics in so-
ciology, physics, biology, and computer science [1]. Var-
ious algorithms for discovering communities and mod-
ules in networks have been proposed: Some are based
on betweenness and similar measures by removing inter-
community links [2,3]. Others use cliques [4], information
theory [5], random walks on networks [6], and similarity
among partitions [7], and the list is not exhausted.

Among these algorithms, greedy modularity maxi-
mization is one of the prevalent approaches for com-
munity identification. The modularity, Q, is a quality
measure of partitioned communities. It is defined as

Q =
∑

i

(eii − a2
i ), (1)

where eii is the ratio of the number of links between
nodes belonging to community i over all links and ai is

∗E-mail: hjeong@kaist.edu

the ratio of all links that cross the boundary of commu-
nity i over all links. The value of modularity ranges from
-1 to 1. The value Q = 0 implies that the number of links
within a community is no better than random.

Modularity maximization methods (MMMs) are effec-
tive in identifying and uncovering community structure
in networked systems, but they have some limitations.
For example, MMMs fail to identify communities smaller
than a certain scale, which is known as the resolution
limit [8].

In this work we report another limitation of MMMs,
namely, the inconsistency among identified communities
in multiple runs of an algorithm. Using empirical net-
work data, we show that all algorithms we have reviewed
produce inconsistent communities every time the node
names are reordered while the structure of the network
remains unchanged.
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Fig. 1. Visualization of inconsistent community identification in the Karate network [12]. Nodes of a color belong to the
same community, and node ordering is depicted as the number in the node. (a) Q = 0.273176, (b) Q = 0.380671, and (c) Q =
0.41979.

II. QUANTIFYING CONSISTENCY

We consider three community identification algo-
rithms: Clauset-Newman-Moore (CNM) [9], Wakita [10],
and Louvain [11]. They all take a greedy approach in
modularity maximization and are the only known algo-
rithms to work for large networks. However, they all pro-
duce different values of modularity for the same network.
Even a single algorithm produces different modularities
when the input order of nodes changes. We show an
example to illustrate the inconsistency even in a small
well-studied network. The communities identified in a
network by using the Louvain algorithm under three dif-
ferent orderings of nodes are shown in Fig. 1. Although
the network has a small number of 34 nodes, identified
communities in Figs. 1(a), (b), and (c) are quite different
and have different modularities. This example demon-
strates that even for a small network, the input order
plays a crucial role in determining the community struc-
ture in complex networks.

The huge number of ways to partition a graph makes
it impossible to optimize modularity exhaustively. From
a macroscopic view, this is fine as long as the modular-
ity varies not too much. However, if we are interested in
network analysis from a nodal perspective, that is, iden-
tifying a community to which a node belongs, it does not
make sense for the node to belong to a completely differ-
ent community every time the input order is perturbed.
For example, we have two snapshots of a growing network
taken a year apart. How has the community of a node
grown in a year? This question is about evolutionary
clustering, and inconsistent communities are a problem.
What we address in this work is the inconsistency not
even over the course of evolution, but within a single
snapshot. If the community identification algorithm is
so sensitive to the order of the input and produces com-
pletely different communities from a node’s perspective,

we cannot answer the question raised in the example.
Thus, before we identify the community to which a node
belongs, we should ask how consistent the community
membership is across different input orders.

Over N runs of an algorithm, each with a randomly
ordered input set, we quantify the likelihood of a pair of
nodes resulting in the same community as

pij =

N∑
n=1

δn(ci, cj)

N
, (2)

where

δn(ci, cj) =
{

1, if ci = cj in the nth dataset
0, otherwise

and i and j are node indices and ci and cj represent
communities to where i and j belong, respectively. This
metric is the pairwise membership probability. The pair-
wise membership probability pij represents the empirical
probability that two nodes belong to the same commu-
nity across multiple runs of the same algorithm [18]. We
can compute pij for all possible pairs of nodes. However,
for any specific i, pij is likely to be 0 for most of j due
to the sparsity of links in the network, and this tendency
grows with the network size. Therefore, we consider pij

only for adjacent nodes; that is, only between neighbor-
ing nodes.

A pairwise membership probability of 1 means that
the two neighboring nodes always belong to the same
community, and 0 means that the two never belong
to the same community irrespective of the input order.
The larger the number of pairs whose empirical pairwise
membership probability is close to either 0 or 1 is, the
more consistent the identified communities are. pij close
to 1/2 means that i and j can be in the same community
more or less randomly.
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Table 1. Summary of the statistics of the network structure for the three empirical networks. N is the number of nodes, L
is the number of links, and C is the global clustering coefficient.

Karate Dolphin Les Word Football Political Condensed

miserables adjacencies blog matter

N 34 62 77 112 115 1,222 36,458

L 78 159 254 425 613 16,714 171,736

〈k〉 4.6 5.1 6.6 7.6 10.7 27.4 9.4

C 0.57 0.26 0.57 0.17 0.40 0.32 0.66

In order to quantify network-wide community mem-
bership consistency, we use consistency C for the entire
network

C =

∑

(i,j)∈E

(pij − 1/2)2

|E| × 1
(0.5)2

, (3)

where E is the set of links and |E| is the number of links
[18]. The consistency C weighs the pairwise membership
probabilities away from 1/2. The multicative term in
Eq. (3) normalizes C from 0 to 1. Our goal is to mea-
sure the consistency of the outcomes of the algorithms,
independent of the structure of the network. For exam-
ple, if more community structures are embedded in the
entire network, two adjacent nodes are (naturally) likely
to fall into different communities. Otherwise, two adja-
cent nodes are likely to fall into the same community. In
this setting, we’d like to consider the consistency as 1
if and only if the algorithm ‘consistently’ finds the same
community partitioning no matter what two nodes are in
the same or different communities. Therefore, the pivot
value should be 0.5 - the same or not.

In this work, we have analyzed consistency in commu-
nity memberships of seven empirical systems from var-
ious fields, such as the Karate club [12], dolphin social
network [13], the co-appearance network of characters in
the novel Les Miserables [14], the adjacency network of
common adjectives and nouns in the novel David Cop-
perfield [15], the regular season network of American
football games between Division IA colleges during the
Fall 2000 [2], a directed network of hyperlinks between
weblogs on US politics [16] and the network of coauthor-
ships between scientists posting preprints on the Con-
densed Matter E-Print Archive [17]. Table 1 shows the
basic statistics of the seven networks.

III. CONSISTENT COMMUNITY
IDENTIFICATION

In the case of communities detected by using the CNM
algorithm in the Karate club, 12.8% of the pairwise mem-
bership probabilities are 0, and the rest of the pairs have
1, which means that nodes of a community always belong
to the same community over N runs: C = 1. In Fig. 2, we
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Fig. 2. Consistency of community identification.

show the consistency from the three algorithms. There
is no one algorithm that outperforms the other two in
all networks, and no consistent correlation between the
consistency and the topological characteristics of the net-
work, such as network size, average degree and average
clustering coefficient. However, a closer look at pairwise
membership probabilities reveals that in all networks far
more than 50% of pairs have pairwise membership prob-
abilities either smaller than 0.2 or greater than 0.8 [18],
which means that most pairs of nodes are never in the
same community or always in the same community, re-
spectively. Based on this observation, we have devised a
consistency reinforcing mechanism as follows [18]. After
each cycle of N runs, we calculate the pairwise member-
ship probabilities and then assign them as link weights.
From the second cycle on, we use this weighted network
as an input and continue the cycle until C reaches 0.999
or higher. In a weighted network, an edge of a higher
weight is placed within a community while an edge of
a lower weight bridges communities. Because we assign
the pairwise membership probability as the weight of the
corresponding link, an edge of high pairwise membership
probability in the prior cycle is more likely to be placed
within a community in the next cycle. Therefore, links
with higher weights are reinforced through multiple cy-
cles and eventually consistent communities emerge.

Our approach has the effect of removing those links
with pairwise membership probabilities of 0 in the next
cycle and spreading the unit link weight between 0 and 1,
thus reducing ties significantly in calculating ∆Q. When
there are ties, can we give preference to nodes based on
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Fig. 3. Convergence of consistency. For each given datum,
from left to right, red color bar (first bar), green color bar
(second bar), blue color bar (third bar), magenta color bar
(fourth bar), and cyan color bar (fifth bar) represent the con-
sistency after first, second, third, fourth, and fifth cycle of
applying the algorithm, respectively.
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Fig. 4. Convergence of modularity (’Un’ indicates modu-
larity of unweighted network). C1 represents the modularity
of the original data. C2, C3, C4, C5, and C6 represent the
modularity after first, second, third, fourth and fifth cycle of
applying the algorithm, respectively. (a) Condensed matter
and (b) Political blogs.

other metrics, such as degrees or betweenness central-
ity [2]? To assess the benefit of other metrics, if any,
we order nodes by the degree, clustering coefficient, de-
gree correlation, and betweenness centrality and com-
pute modularity.

Even if we employ all the metrics in tie breaking, we
cannot eliminate ties completely [18]. In other words,
no single topological characteristic consistently stands
out to work better than others in all networks. We have
looked at edge betweenness as well, and found no correla-
tion between edge betweenness and pairwise membership
probability.

Our approach of reinforcing consistency in multiple
cycles is applicable to any of the three algorithms. We
include only the results from the Louvain algorithm in
this paper, for it is the fastest and only one that scales
up to billions of links. We report that the other two
algorithms have similar results.

The convergence of consistency after 5 cycles is shown
in Fig. 3. All networks consistency reaches 1 in 5 cycles.
In Fig. 4, we show how the modularity converges over
5 cycles. The modularity converges almost to a single
point after 2 cycles. Furthermore, the modularity after
convergence is higher. Figure 4 demonstrates that our
approach has no negative impact on modularity and even
improves it in certain networks.

So far, we have shown that our solution of using pair-
wise membership probabilities as link weights has im-
proved consistency greatly. Now, we check if communi-
ties from different trials come out identically. We turn
our focus to individual communities in two independent
trials. A cycle is N runs for a given network. A trial
is M cycles of a given ordering of the network. We use
M = 6 and N = 100. In order to check if the communi-
ties are identical across trials, we calculate the maximum
Jaccard coefficient (the ratio of the intersection to the
union of two communities) of a community against all
communities of another trial. A Jaccard coefficient of 1
means that the same communities are produced in both
trials. We compare the Jaccard coefficients for all pairs
of trials, and most Jaccard coefficients are found to be
greater than 0.95.

IV. CONCLUSION

In summary, we have investigated the inconsistencies
among communities when existing community identifi-
cation algorithms (CNM [9], Wakita [10], and Louvain
[11]) are applied. Using empirical network data, we
have shown that all three algorithms produce inconsis-
tent communities every time the node ordering changes
even when the size of networks are small. Similar re-
sults based on very large online social networks are also
reported [18]. To quantify the consistency of identified
communities, we introduced pairwise membership prob-
ability and consistency. The former quantifies the likeli-
hood of two nodes resulting in the same community, and
the latter represent the global level of consistency derived
from pairwise membership probabilities of a network We
analyze seven empirical networks in terms of the above
two metrics and show that no one algorithm outperforms
the other two in all networks. However, most pairwise
membership probabilities are close to either 0 or 1 (that
is, never in the same community or always in the same
community, respectively). Based on this observation, we
use a consistency reinforcing mechanism that improves
the consistency without compromising the modularity.
The key idea is to set the pairwise membership proba-
bility as the link weight and to find communities in the
weighted network iteratively. We have demonstrated the
convergence of consistency within 6 or fewer cycles. Re-
sulting communities exhibit consistent grouping through
multiple trials.
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